ICEbear User Manual

Martin Strubel <hackfin@section5.ch>

17.5.2006

Revision:
v1.0.1

Preface

The ICEbear is a USB JTAG connector designed to run with the Blackfin CPUs from Analog
Devices and the GNU development tools via the Blackfin Emulation Library (libbfemu - see
Chapter[2). The libbfemu is part of the ICEbear package and provides a documented API to
test, debug and remote control Blackfin hardware via JTAG.The main applications that the
ICEbear is designed for, are:

e Target programming and debugging
e Flash programming
. Hardware test for production

Blackfin™ is a registered trade mark of Analog Devices Inc. Cygwin™ s a registered
trademark of Red Hat Inc. Linux™ is a registered trademark of Linus Torvalds. Windows™ is a
registered trademark of Microsoft Inc.

The ICEbear is a part of an evaluation or development kit and not intended to
@ be an end customer device. The developer is responsible for compliance with the
local EMI rules when integrating the ICEbear into a system.

The ICEbear uses RoHS compliant components since May 2006.

0.1 Warranty

section5 warrants that the Hardware ("Hardware") shall be free from material defects in
design, materials, and workmanship and will function, under normal use and circumstances,
materially in accordance with this documentation for a period of one year from the date of
delivery. Components or the design of the Hardware are subject to change without notice, as
long as functionality or operation are not affected.

Defective Hardware returned to section5 within the warranty period will be replaced and sent
back to the customer at no charge, solely upon confirmation of a defect or failure of Hardware
to perform as warranted.

The foregoing warranties shall be void due to any of the following:

1. if the Hardware has been opened, modified, altered, or repaired, except by section5 or its
authorized agents

2. if the Hardware has not been installed or maintained or used in accordance with
instructions provided by section5

3. misuse, abuse, accident, thermal or electrical irregularity (voltage excess), fire, water or
other peril

4. damage caused by containment and/or operation outside the environmental
specifications for the Hardware

5. connection of the Hardware to other systems, equipment or devices or use with other
third party software without the prior approval of section5

6. removal or alteration of identification labels or EEPROM serials on the Hardware or its
parts

7. failure to comply with all warranty return terms and conditions as set forth herein

To request a warranty service, please contact section5 via the link provided in Appendix|B|
describing the problem or malfunction. section5 will contact the Customer and confirm the
warranty request. The Customer must package the Hardware in the original or appropriate

0.1 Warranty 1

packaging such that further defects during shipping can be avoided. Shipments without
confirmation of the warranty request will not be accepted. section5 is not liable for loss or
damage during shipment and requires the shipping to be insured for its full value outside the
EC.

section5 shall not be responsible for any software, information, or memory data of Customer
contained in, stored on, or integrated with any Hardware returned to section5 for replacement
whether under warranty or not. Customer is responsible for backing up its programs and data
to protect against loss or corruption.

The Hardware and Software is not designed, manufactured or intended for use in hazardous
environments requiring fail-safe performance, such as in the operation of nuclear facilities,
aircraft navigation or communication systems, air traffic control, weapons systems, direct
life-support machines, or any other application in which the failure of the Hardware could lead
directly to death, personal injury, or severe physical or property damage or environmental
damage (collectively, "High Risk Activities"). section5 expressly disclaims any express or implied
warranty of fitness for such High Risk Activities.

0.1 Warranty 2

Getting Started

1.1 Supported platforms

This is the list of currently well tested and stable platforms:

1. ADSP-533, 537 and 561 EZKIT lite from Analog Devices, Inc.

2. STAMP BF533, BF537 from Analog Devices, Inc.

3. DSPStamp from Cambridge Signal Processing Ltd.

4. ZBrain BF533 core module and eval platform from Schmid Engineering AG

If connecting the ICEbear to custom hardware, make sure that the JTAG interface was designed
according to the application note EE-68 ([bib_ee68] App. [B).

The software supporting the ICEbear is working under Linux and Windows NT 32 bit operating
systems.

If you would like to see support for other platforms, or get your hardware listed above, please
contact us (Appendix[B] please also send a short test report).

1.2 Installing the software

This section contains the installation instructions for various system configurations. It is
assumed, that you either have a CD that came with the ICEbear or that you have downloaded
the software at the section5 homepage.

1.2.1 Windows/Cygwin

o It is very recommended to install a Cygwin system on your Windows PC. However,
the basic software does not require Cygwin to run. See http://www.cygwin.com
for more info. Alternatively you may use MSYS/MinGW (http://www.mingw.org).

Run the Self Installer (ICEbear-<version>.exe , on the CD, this is in win32). The installation
process should be self explaining. If you have trouble installing the drivers, you can manually
install them by right clicking on the file ftd2xx.inf in the drivers folder and choosing
Install. When experiencing difficulties, please refer to Appendix|Al

After finishing the installation, plug in the ICEbear to complete the driver installation. You can
safely ignore the Windows Certification warnings. Now you can start the programs from the
ICEbear program menu.

Note that your personal firewall (which might be active on your machine) must allow the port
2000 to be accessed locally. If you get a warning when starting gdbproxy, you can safely
unblock it.

1.2.2 Linux
The ICEbear is known to run smoothly with the following configuration:

o Kernel 2.4.X or later
. libusb-0.1.7 or greater

http://www.cygwin.com/
http://www.mingw.org/

For 2.6 kernels, there is an issue with the ftdi_sio driver, preventing ICEbears with Rev. B being
properly acknowledged. See Troubleshooting section (Section for a workaround. With
Rev. C (sold after 1.4.2006), this problem is solved. You may have an early release of the Rev. C
adapter which does not have the proper identification code. In this case, check the download
section for the icebear-pid-updater tool.

Depending on your linux distribution, you will want to choose an installation method from the
sections below. The ICEbear software package contains some support files (examples, scripts)
that might be important for the user. See package description below about the location of
these files.

Debian
It is assumed that you have a recent debian installation like the following (tested):

e Debian 3.1 (sarge)
. Knoppix 3.2 or later

Install the Debian packages in the linux/debian subdirectory according to the READMEHile.
You need to be root for this action.

To automatically update these packages via the Debian web based package manager (apt-get),
you may want to put the following entry in your APT configuration file

letc/apt/sources.list :

deb http://www.section5.ch/dsp/icebear/debian sarge main non-free

Update your package list with the command apt-get update . Then you can automatically
install or upgrade your ICEbear software with the command apt-get install

icebear-gdbproxy . Note that you may have to add other Debian mirrors to sources.list ,
if library dependencies (libftdiO, libusb) can not be resolved.

Important support files

e Documentation (you will have to install the libbfemu-dev package also):
{usr/share/doc/libfemu-dev/html/index.html

o Examples: /usr/share/doc/libfemu-dev/examples

RPM based Linux distributions

For Redhat package based systems (Redhat, SuSe, etc.), the above Debian packages have been
converted to the RPM format - see linux/rpm subdirectory. However, they have not been
extensively tested. If you experience problems, please report them.

Any distribution (from tar file)

Make sure you have one of the newer kernels (2.4.XX or later) with USB device filesystem
enabled and libusb installed. Unpack the ICEbear tar file by

tar xfz ICEbear-<version>.tgz

In the lib/ folder you will find the necessary DLLs (.so's) to link against. If you are not
installing them into one of the standard library directories, add their path into the
LD_LIBRARY_PATHenvironment variable and modify your Makefile library flags (-L), if
necessary.

If you are installing the source package, you will have to compile and install each software
separately. Read the installation notes inside the directories.

1.2 Installing the software 4

1.3 Connecting the ICEbear

First, remove the power from the board or unplug the ICEbear from the USB port. Never plug
the ICEbear into the board while any JTAG software is running.

Connect the ICEbear as shown in Fig. below. The JTAG connector has a key on pin 3 which
prevents it from plugging it in the wrong way.

Figure 1.1: Connecting the ICEbear to the JTAG port

ByteBlaster (R4 bypass). This will destroy either your board or the ICEbear and

: Do not connect the ICEbear to a STAMP board that was modified to run with a
make all warranty void.

When removing the ICEbear, do not pull on the cable to avoid cable stress which can damage
the USB connection to the ICEbear. Hold the bottom connector firmly with two fingers and
gently wiggle it out lengthwise. Do not apply too much force to not bend your JTAG pins or
stress your PCB.

1.4 Running the software

To test whether the adapter is running, execute one of the examples, for instance in Linux:
icebear-dumpreg

or Run Demos from the ICEbear program menu in Windows.

If everything is properly connected, this will give you a register dump of the current cpu state.
Alternatively, you can start gdbproxy and fire up the debugger - see next chapter.

1.3 Connecting the ICEbear 5

2

Software

Please note that there is no free support for the GNU toolchain. This software is supplied AS IS,
please read the GNU license and usage statements. However, we will try our best to keep the
GNU toolchain working optimally with the ICEbear. New with the 1.0 release is the Insight
debugger. This is a GDB port made by Red Hat and Cygnus Solutions, adapted to Blackfin by
section5. More details below.

Developer documentation is found in [bib_bfemu] App.

2.1 gdbproxy

For debugging a JTAG hardware target, gdbproxy serves as a remote debugging daemon
which the GNU Debugger (GDB) can connect to. gdbproxy translates all the GDB commands
into the appropriate JTAG sequences via libbfemu, which is driven by an added target 'bfin’.
To get help about the target specific options for gdbproxy, type gdbproxy --help bfin
Omitting the target choice 'bfin’ shows the common options.

An important option is the --speed option. For example, to use maximum speed of the
ICEbear, start gdbproxy with the following arguments:

gdbproxy bfin --speed=0

The complete list of options is show below.

Option name Description

speed= <value> Change JTAG clock speed value. The maximum JTAG clock frequency
on the ICEbear (6 MHz) will divide by the value plus one. The default
speed value is 1.

buffersize= <size> | Change write cache buffer size to specified size. If 0, disable write
cache.
debug Enables debug output mode. Use this mode only, when you suspect a

bug in the target handling

Table 2.1: gdbproxy Blackfin specific options

The source code of gdbproxy (v0.7.3) is freely available under the author’s (Quality Quorum,
Inc.) license.

2.2 Insight Debugger

The Insight debugger is a GDB variant with built in GUI. It has some extra features and is very
powerful. For beginners, it is recommended that you start with Insight. Note that Insight is
free software, source code is available at http://sources.redhat.com/insight/.

2.2.1 Setting up and configuring Insight

Before you can start debugging your target, you will have to do a bit of setting up your
environment. For example, if the executable that you want to run on your target lives in
SDRAM, you will have to do the necessary setup of the SDRAM controller (Synchronous EBIU).

6

http://sources.redhat.com/insight/

You can do all these setups manually by writing to a specified address, but GDB scripting can
simplify that task greatly.

Auxiliary scripts

A few auxiliary GDB scripts are provided in the location below. These are:
mmr.gdb Some of the important MMR register definitions

init.gdb Some example initialization scripts for standard boards

dump.gdb Some register dump helper functions to display interrupt status, etc.
catch_exc.gdb Example on how to catch exceptions

OS-dependent locations:
Windows $(PROGRAM_FILES)/section5/ICEbear/scripts
Debian Linux | /usr/share/gdbscripts

To load these scripts, either use the ‘source’ command or load it via the Menu File->Source. You
can then use these register definitions for example in a Watch window (see below in Section
2.2.2).

.gdbinit Startup script

For a specific project, you certainly do not want to repeat initialization procedures over and
over. Therefore, it is recommended to write a .gdbinit script in your project’s directory.
When you start Insight from that directory, it will automatically load the .gdbinit script.
The sample script below demonstrates how to automatically connect to the target (provided
that gdbproxy is running) and do the necessary initialization. Note that you have to strip the
comments (include the '#') when copy pasting the file.

file blink.dxe # Select blink.dxe executable
target remote :2000 # Connect to the local gdbproxy
source ../scripts/mmr.gdb # Load MMR definitions

source ../scripts/dump.gdb # Load Dumper functions

set prompt (bfin-jtag-gdb)\ # Set the prompt

define target_init # Define target initialization function
monitor reset # Reset the target
end

If your program uses SDRAM, you will have to put some SDRAM initalization code in your
function "target_init’, like below:

define target_init # Target initialization with SDRAM
monitor reset

set *$EBIU_SDGCTL = 0x0091998d
set *$EBIU_SDBCTL = 0x0025
set *$EBIU_SDRRC = 0x0817

end

2.2 Insight Debugger 7

Note that this example is for a specific board. See initgdb for a few default initializations.
For your own board, you must possibly adapt these values to SDRAM configuration and system
clock. See your Blackfin Hardware Reference.

If the EBIU and system settings are not correct, the Blackfin can core fault on
A SDRAM access. This can not be caught by the debugger. You will then have to
reset the system.

You can also put system wide declarations in a .gdbinit script residing in your home directory.
Note however, that all variable declarations are cleared when you switch executables. So,
calling mmr.gdb from $(HOME)/.gdbinit has no effect. However, a function definition
(‘define’) remains. If you are accidentally including a script with function definitions twice,
Insight will complain.

Insight is not very communicative on startup script errors. Before trusting a script, test it by
starting Insight with the '-n’ option (no startup script execution) and load it explicitely in the
console using the ‘'source’ command. Whenever a user defined command such as target_init
fails, the console will display an error message.

When starting Insight in Windows via the Start menu, the .gdbinit script in the

(& scripts directory (as specified in Section is executed by default. You can
change the working directory via the Properties menu of the Insight debugger’s
red bug icon (Right click on the icon to call this menu).

Setting up Insight

Before you can connect to the target, you need to specify some parameters. This is done by
calling the configuration dialog below (Fig. via File->Target Settings.

When your program fails and you need to reconnect and download again, you would want to
call the initialization function target_init() whenever you connect or run the program.Click
on ‘More Options’ to expand the dialog like shown below and enter ‘target_init’ in the text
field.

E=lEE Target Selection]
, W Zet breakpoint at 'main'
Connection
Target: Eemote/TCP R W Set breakpoint at 'exit'
Hostname: | Set breakpoint at
Fort: 2000 1 Display Download Dialog

1 Use zterm as inferior's tty

- Fewer Options

—Run Optieons

Eun Method
W Attach to Target {_

~ Bun Program

4 Continue from Last Stop

W Download Program

Command te issue after attaching:

target_init

OK Cancel Help

Figure 2.1: Target configuration

2.2 Insight Debugger 8

After you have set up your target, make sure that gdbproxy is running and has properly
detected your target. Then you can connect to the target within Insight via Run->Connect to
target.The next step is, to download the program (Run->Download) and call ' [Continuel'. You
can also execute ' Run' immediately. The target will then halt at the first breakpoint (‘main’, as
specified in the Target Selection dialog).

When you need to reload the program, you can either cycle through Disconnect/Run via the
Run menu or define a script with the necessary initializations.

Special commands

Please refer to the GDB documentation for all GDB commands. All ‘monitor’' commands are
implemented in gdbproxy and considered ‘special’. These are:

monitor reset Resets the target (core and system)

All GDB commands can be entered via the console window (View->Console).

2.2.2 Examining programs and variables

Source code and assembly debugging

By default, and if you have compiled your program with the '-g’ flag, you will see the native
source code (C, C++, Assembly) in the main window. The current location of the program
counter is marked by a green bar. With the drop down menus on the top you can select other
files and functions. On the right drop down, you can change the display mode. For example,
the mixed mode displays interleaved C source and disassembly as shown in Fig.

Note that mixed or assembly mode display can take a long time to read from the
@ target, when your program lives in L1 onchip memory. If you want to avoid that,
use the technique explained below.

If you run a program without debugging information, there is no source code or disassembly
display available. You can still look at the executed opcodes via the console (View->Console).
The command display/i $pc displays the assembly command at the current PC location. For
convenience, you can step into or step over using the si and ni command on the console.

% Simply pressing ‘Return’ on the console repeats the last command

Variable watching

You can view the current content of a variable any time by moving the mouse pointer over its
location in the source code. It will automatically retrieve the value and display it. Note that this
can take a long time on variables such as buffers or strings. You can turn this behaviour off via
Preferences->Source->Variable Balloons.

If you want to repeatedly watch a register or global variable, you can use the Watch window
(opened via View->Watch Expressions). For example, if you want to look at the interrupt state
of the core, you can display the IPEND register (which is defined in mmr.gdb) by entering the
expression *$IPEND ' into the text field left to the button like shown below (Fig.
2.3). Normally, variables are displayed as decimal. If you want to change the display, click with
the right mouse button on the variable entry and choose via the Format menu.

2.2 Insight Debugger 9

EHEE shell.c - Source Window [
File RBun \iew Control Preferences Help
FHTHD DG A AESDM-IE Find:fex = & =
|shell. e ~| |readchar Rd MIXED -
- Oxffallbaa <readchar+38:=: p2.1 = Ozck; SOURCE
- Oxffallbae <readchar+42:>: ri = [p2]; ASSEMBLY
- Oxffal0bbl <readchar+44:=: rd += -1;
- Oxffad0bk? <readchar+dts: [pl] = r; SROFLEM
- Oxffaf0bkd <readchar+di=: rl = rl + ri;
- Oxffal0bbt <readchar+50=: p2 = rl;
- Oxffal0bbd <readchar+52=: rd =k [p2] (z};
- Oxffal0bba <readchar+54:=: [fp + -4] = rQ;
119 return a;
- Oxffaldbbe <readchar+56>: r = [fp + -41;
Oxffallbbe <readchar+58=: [fp + -12] = r0;
- Oxffal0bcl <readchar+60>: Jump.s O0zffallbde <readchar+90:;
120 } else |
121 /4 This blocks forewver if we don't get a
122 while {serial_readWNB{0, =, 1) == 0} |
- Oxffaldbc2 <readchar+6i:=: rl = fp;
- Oxffaldbcd <readchar+6d:=: rl += -§;
- Oxffaldbct <readchar+66>: r(= 0=z0 (=);
- Oxffal0bct <readchar+t68>: rZz = 0zl {(x);
W Oxffallbca <readchar+70>: call Oxffalli?d <serial readMNBE:=;
- Oxffallbce <readchar+74:>: ce = rd == 0x0;
- O0xffal0bd0 <readchar+76>: if lee jump 0xffal0bd8 <readchar+8d:;
123 handle mainloop();
- 0xffad0bd2 <readchar+7i=: call Oxffal0h78 <handle mainloops;
- OXffaOOggg <readchar+82:>: Jump.s O0xffallbc2 <readchar+62:;
125 return s[0];
- Oxffa005d8 <readchar+8d:=: r =k [fp + -8] (xz};
- Oxffal0bde <readchar+88>: [fp + -12] = r0;
126 1
127 1} L
- Oxffallbde <readchar+90:>: ri = [fp + -12];
- Oxffal0bel <readchar+92:>: unlink;
- Oxffadlbed <readchar+3dt:: rts: i
~l I =]
IF’rogram is running. [££2005d6] 123

Figure 2.2: Source Window

2.2.3 Finding bugs

Finding a bug can sometimes be an art, especially on a complex embedded system as a Blackfin
driven platform. Most common errors when starting with a standalone developent (without
uClinux) on Blackfin systems are due to hardware or other exceptions. Generally, it is a good
idea to install exception handlers in L1 SDRAM and set break points on the exception handler
routines - look at the catch_exc.gdb script. This must obviously be called after the exception
vectors have been initialized. For concrete tips on how to track down a problem, please see
'Debugging Tips' section in the the support forum at http://www.section5.ch/forum/. A few
general hints are listed below.

If Insight stalls and does not react to user input after a certain sequence of stepping over the
code, it is mostly not to blame to a debugger flaw. Find out by reproducing the situation what
exactly happens on the target. Single instruction stepping should always work, however,
stepping over C source code can sometimes jump into subroutines and single step through
them which can take a long time. If you can wait, it helps to be patient. In case of such events,
you can try to track down what is going on by several ways:

e Look at the gdbproxy console. If there are core faults, they mostly are due to a failing
exception handler, for example a handler living in SDRAM which was not properly
initialized. Such errors cause double faults and make the core stall. You then have to
reconnect (within Insight) or reset the target via ‘monitor reset’ or in heavy cases by
pressing the reset button.

2.2 Insight Debugger 10

http://www.section5.ch/forum/

EEIEEE Watch 1= =] e
*$IPEND = (unsigned long) 0x8001
Add Watch

Figure 2.3: Watch window

. Enable the debug mode of gdbproxy by enabling the --debug option. If you are lost,
send a dump of this output to section5, possibly we can help you.

e Write a script that single steps though the code until a certain event occurs. This can be
done with a while/end loop, see GDB script syntax in the GDB online manuals

2.3 bfin-jtag-gdb (GDB)

This is the hardware debugging version of the GDB port for Blackfin.The core functionality is
the same as of Insight’s. Note that this GDB version is different from the bfin-elf-gdb variant
provided by blackfin.uclinux.org and no longer actively supported by section5.

A HOWTO on getting started is found in the bfemu documentation. Documentation about
GDB in general can be retrieved using the 'info gdb’ command on Linux or from various web
resources (http://www.gnu.org).You may also want to try the graphical debugger frontend
DDD which is available on most Linux systems. To run bfin-jtag-gdb with ddd, execute

ddd -debugger bfin-jtag-gdb <program to debug>

To save yourself some typing, you may want to define an alias in your .bashrc or .profile
startup file.
The source code of this GDB version is available under the Gnu Public License.

2.4 bfloader

bfloader stands for ‘Blackfin Flash Loader’ and consists of a collection of GDB scripts and a
standalone executable to program the flash of common Blackfin targets. This software is
provided for free and as source code. Users can easily adapt the source for the backend target
to their customized hardware. The bfloader distribution can be downloaded from
http://www.section5.ch/software/. Documentation can be found in the doc/ sub folder of this
package. Below, only the standalone flash loader commands are listed.

2.4.1 Flashloader Usage

This standalone executable does not require gdbproxy to run. Parameters are passed with
option flags like shown below:

Uflashload --info --backend=zbrain/bfloader.dxe --eraseall

--program=zbrain/vmimage

The description of command options is listed in Table [2.2] Running the flashloader without
arguments displays a list of supported options.

2.3 bfin-jtag-gdb (GDB) 1

http://www.gnu.org
http://www.section5.ch/software/

Command options

Note that all file related actions (program, dump, compare) can only be used at a time.

Examples

Here is a list of examples on how to use the flashloader. Note that this assumes the appropriate
backend (bfloader.dxe) in the current working directory.

Erase and program a flash with a full flash image ./flashload --eraseall
--program=flash.img

Program a flash with a partial flash image from offset 0x10000 ./flashload
--program=flash.img --offset=0x10000

Partial erase of flash ./flashload --erasesectors=0,32
Verify flash content against binary file image ./flashload --compare=flash.img

Read first 1M partition of a boot flash ./flashload --dump=flash_read.img
--offset=0x0 --size=0x100000

2.5 libbfemu

The Blackfin Emulation library libbfemu (or bfemu) is a library which supports you in testing

your hardware via JTAG. In conjunction with the ICEbear, it is a very important component of a

hardware production chain. A short feature overview:

o Register read/write

e Memory read/write

. Program sequencer control: Stop, go, single step

e Software breakpoints. Hardware breakpoints are currently not used due to Blackfin
anomalies.

libbfemu comes with examples. The examples have been tested under Linux and
MinGW/Cygwin.

2.5 libbfemu 12

Option name

Description

info

Displays information about flash driver and flash geometry

version

Displays the program version

program =<filename>

Write the binary image in file with name filename to flash. If
none of the size and offset options are specified, offset is
assumed 0 and size the size of the file.

dump=<filename>

Dump the content of the flash specified by offset and size
to a file. Specifying size is mandatory.

compare =<filename>

Compare flash content with the binary image in the given file.
If specified, the comparison is started from offset up to

size . Otherwise, offset is assumed to be 0 and size to be the
size of the file.

eraseall

Erase entire Flash chip. This can take up to a few minutes,
depending on the flash chip size.

erasesectors =<off>,<n>

Specify the number of sectors n to erase, starting from sector
number off .You must know the sector geometry of the Flash
in order to determine the corresponding addresses. This
option is only relevant when you use a partitioned flash.

offset =<Address in hex>

Specifies an offset in hexadecimal format. You must use a
prefix ‘0x’ for this hexadecimal number, e.g. --offset=0x1000.

size =<Size in hex>

Specifies a maximum size to read, write, or compare. The
format is the same as in the offset option.

noverify

Turn of verify after write.Verify is always on by default, if this
option is not specified.

backend =<backend>

Specify the loader backend to load on initialization. If not
specified, the default compiled in backend name
('bfloader.dxe’ in the current working directory) is used. This
must be a valid bfloader backend, VDSP backends are not
compatible.

speed =<value>

Change JTAG clock speed. 0: fastest, 255: slowest. Note that
too low clock speeds (values > 4) might not work. Default is 1
(3 MHz TCLK).

Table 2.2: List of command options

2.5 libbfemu

13

3

Technical Specifications

These specifications only apply when connected to approved hardware as listed under Section

i

Supported Blackfin CPUs | BF531, (BF532), BF533, (BF536), BF537, (BF539), BF561
USB compatibility 1.1, 2.0

Memory read speed 10kB/s(min), 80kB/s(typ), 130kB/s (peak)

Memory write speed 40kB/s(min), 120kB/s (typ), 240kB/s (peak)

Table 3.1: General features

Blackfin CPUs that are listed in brackets are supposed to be recognized, but not extensively
tested.

Memory access times depend on OS and on used block sizes. Via GDB/Insight, the download
speed can be significantly lower.

VCC Supply Voltage 5V (USB bus powered), 6V maximum

Supply current max. 100mA (typ. 25mA)

Operation Temperature Range | 0-70°C

Table 3.2: Absolute maximum ratings

max. JTAG clock (TCLK) 6 MHz

TCLK rise time typ. 6ns

Output voltage levels L: OV H: 3.3V +- 5%

max. DC output current 20mA

Mean Time between JTAG failure | not measureable within 150 hours

Table 3.3: JTAG operation

14

A

Troubleshooting

This is a collection of the most common errors that we could think of. If your question is not
answered here, please contact section5, see Appendix B]

A.1 General

The ICEbear is not recognized

See Section[A.3lfor more information.

The software recognizes the ICEbear, but not the target board

Make sure the JTAG connector is properly attached and that the power is supplied to the
board. If your board is not listed in the hardware support list (Section|1.1), make sure that the
JTAG connector has the pinout and voltage specifications according to [bib_ee68] App. [B]. See
also Section[1.1]for more information. If you can not solve the problem, consult us.

A.2 gdbproxy errors

This section helps you to determine a connection problem according to the output of gdbproxy
(>v0.8). When gdbproxy fails to recognize the target or the ICEbear, you will in general get the
error message: error: Could not open ICEbear connection . The following possible
errors are explained in detail below:

error: Make sure that no other program/driver (ftdi_sio?) is claiming
the port

You have a 2.6.X kernel: see section ‘USB problems’. Are you sure there is no gdbproxy or other
program running and grabbing the device?

error: Could not detect target, check connection and power

The ICEbear was recognized, but connection to the target could not be made. That means, that
the target ID was not properly read. Please go through the following check list:

. Is your Blackfin CPU in the list of supported CPUs?

* Areyou sure that there is no USB problem such as listed below (Section|A.3)?

e Does your JTAG chain only contain the Blackfin device?

e Could there be issues with the JTAG frequency or extra cable lengths to the target? See
also 'Target hardware issues’ below. If this randomly works, this might be well the case.

A.3 USB problems

Windows: The driver shows a yellow ‘! mark in the Device Manager

Try to reinstall the driver by right-clicking on the device icon, choosing Uninstall..., and
installing the FTDI driver again. Try running the FTClean utility from the FTDI website
(www.ftdichip.com) to clean up old driver relicts. If the problem persists, check whether the
ICEbear works on another computer. If this fails, please contact us.

15

@ Make sure you always install the driver before plugging in the ICEbear!

Windows: The ICEbear is not recognized

Do you have any USB to serial port converter installed on the system? Try again with
unplugging this converter and re-plugging the ICEbear, possibly to another port. The ICEbear
software will support several USB adapters in future releases.

Windows: The ICEbear does not properly work anymore after interrupting a test program

When hitting Ctrl-C on a console program such as memtest.exe, it may happen on some
systems, that the ICEbear can not be initialized again after. This is something we can not fix
(except by catching Ctrl-C), as obviously the USB driver failed to free resources when the
program was cancelled. Workaround: Unplug the ICEbear, wait a few seconds, and plug it back
again.

Linux 2.4.X kernels: The ICEbear is not recognized
Try the following to recover from the problem

1. Login as 'root’ and type 'dmesg’ after plugging in the ICEbear. If the following message
does not appear, your kernel might not properly be configured for USB (missing usbdevfs
module?). If you contact us, report your Linux distribution.

hub.c: new USB device 00:04.2-1, assigned address 4
usbh.c: USB device 4 (vend/prod 0x403/0x6010) is not claimed by any active driver

Also, check /proc/bus/usb/devices . The above vendor/product number should be
identified as from FTDI.

2. Make sure that no other software is using the device, for example another USB port serial
driver. If a kernel module ftdi_sio is active, remove it (rmmod ftdi_sio).

3. Make sure you have the permissions to access the USB port in /proc/usb/<hub_number>
To grant a user the permission, use an entry like the one below in your /etc/fstab

usbdevfs /proc/bus/usb usbdevfs defaults,devmode=0666 0 0

Linux 2.6.X kernels: ICEbear not recognized
Try the following steps:

1. Type dmesg after plugging in the ICEbear. If it was properly recognized, the following
message appears:

usb 2-1: new full speed USB device using uhci_hcd and address 2
usb 2-1: configuration #1 chosen from 1 choice

If you have a Rev. B ICEbear, your Linux kernel might be configured to automatically load
the ftdi_sio driver which claims the ICEbear device. Thus, the ICEbear software is not
able to access the device. Check for the ftdi_sio module (Ismod) and remove it (as root)
from the kernel after plugging in the ICEbear (rmmod ftdi_sio). You may also change
your kernel module configuration such that ftdi_sio is not loaded automatically. This can
be achieved by uncommenting the line in
llib/modules/<your-kernel-version>/modules.usbmap containing:

A.3 USB problems 16

ftdi_sio 0x0003 0x0403 0x6010

This prevents automatic loading of the ftdi_sio driver. If you use a FTDI based USB to serial
converter in your system, you will have to load the ftdi_sio driver manually after plugging
in the other adapter.

Look at /proc/bus/usb/devices. You should find an entry with the lines Revision B:
P: Vendor=0403 ProdID=6010 Rev=5.00

S: Manufacturer=FTDI
S: Product=Dual RS232

Revision C:

P: Vendor=0403 ProdID=c140 Rev=5.00
S: Manufacturer=section5
S: Product=ICEbear JTAG adapter

If you do not see any of these lines after plugging in the ICEbear, there might be
something wrong with your USB connection. If the Rev. C ProdID does not match with the
one listed, you may have to run an updater tool to avoid the ftdi_sio problem - see Section
If the ICEbear neither works under Windows, a hardware error has to be assumed -
please consult us before returning the ICEbear for check-up.

Check user permissions: The file /etc/fstab should contain a line like:
usb /proc/bus/usb usbfs defaults,devmode=0666 0 0

If in doubt, try running the ICEbear software as root to verify a permission problem.

A.4 Target hardware issues

Generally, when connecting to custom hardware, failures can occur due to too

@ long JTAG cabling. You must keep your JTAG connection between CPU and ICE-

bear as short as possible. If this can not be achieved, try decreasing the JTAG
clock speed (see Section[2.1).

Emulation not ready

If the error message "Emulation not ready" (ERR_NOTREADYppears, the system may have
hung completely and can not be reset. Try the hard reset button or reconnecting the power.
When doing that, make sure that any program driving the emulation is no longer running.

SDRAM Memory test fails

If you get memory read or write failures when accessing SDRAM, this is most likely not an issue
with the adapter itself. There can be several reasons:

1.

The SDRAM is not configured correctly, either by your embedded application or by your
program using bfemu. If you are using GDB, read the notes about initialization in
[bib_bfemu] App.

Your target hardware can not handle the clock speed of the ICEbear. Try lowering the
clock frequency by using the function jtag_config() from the bfemu library. Too low
clock frequencies can again cause misfunction. Normally, you should only use clock wait
cycles from 0 to 4. See also gdbproxy options (Section [2.1).

A.4 Target hardware issues 17

Register does not read correctly

Try to repeat the procedure several times when the target system is halted. If you still get
garbage values, the JTAG connection is probably instable. This should never happen, if your
board is among the ones in the supported platforms list (Section[1.1). Check for externally
connected hardware that may cause a problem.

Target memory reading is much faster under Windows than under Linux

This is due to the USB driver implementation under Linux. Even if memory reading is
implemented via an efficient command queue, it can not be accelerated further with the Linux
driver.

A.4 Target hardware issues 18

Literature and Links

For remarks or support, please use the order/feedback form at
http://www.section5.ch/order.php.

B.1 Bibliography

A list of documents and further pointers:

[bib_bfemu] bfemu - The Blackfin emulation library
08/2005, section5::ms <hackfin@section5.ch>
URL: |http://iwww.section5.ch/bfemu

[bib_ee68] EE-68 JTAG Emulation Technical Reference Application Note

Analog Devices
URL: |http://iwww.analog.com

19

http://www.section5.ch/order.php
http://www.section5.ch/bfemu
http://www.analog.com

	Warranty
	Getting Started
	Supported platforms
	Installing the software
	Windows/Cygwin
	Linux

	Connecting the ICEbear
	Running the software

	Software
	gdbproxy
	Insight Debugger
	Setting up and configuring Insight
	Examining programs and variables
	Finding bugs

	bfin-jtag-gdb (GDB)
	bfloader
	Flashloader Usage

	libbfemu

	Technical Specifications
	Troubleshooting
	General
	gdbproxy errors
	USB problems
	Target hardware issues

	Literature and Links
	Bibliography

